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Scope of Contract NAS2-4151

Work under Contract NAS2-4151 started on February 1, 1967

with the purpose "to define .and study one or more probabilistic

models for the computation of lifting rotor random dynamic

loads and vibrations, which are suitable for the interpretation

of wind tunnel and flight measurements of rotor loads and

vibrations using power spectral density measuring techniques."

This report summarizes the results obtained through August, 1967

when eight man-months of work had been expended. Work under

subject contract, which extends through July, 1968 to a. total

of twenty-one man-months, is being continued.



Concepts for a Theoretical and Experimental

Study of Lifting Rotor Random Loads

and Vibrations

by Kurt H. Hohenemser

and Gopal H. Gaonkar

Washington University, .St. Louis, Missouri

Abstract:

After briefly discussing a number of lifting rotor conditions

with random inputs, the present state of random process

theory, applicable to lifting rotor problems is sketched.

Possible theories of random blade flapping and random blade

flap-bending are outlined and their limitations discussed.

A plan for preliminary experiments to study random flapping

motions of a see-saw rotor is developed.
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Notation for main report

Px = E [x] Expected value of sample x

E [f(x)] Expected value of sample function f(x)

l = x1 (tl),x 2  x2 (t 2 ) Values of sample function x(t) at

times tl and t2 respectively

P(xl), p(x1 ,x2 ) First and second order probability

densities

t Time

7 = t2-t 1  Time difference

t +t
t = Average time

2

Rxy(l, t2) Cross-correlation function between

sample time functions x(t) and y( )

S. Frequency
27

Af Frequency interval

X(f) Fourier transform of sample

function x(t)

sxy (f1f 2) = E [X*(f )Y(f2 Cross-correlation function

between sample frequency functions

"X (f) and, Y(f2) , also called power

spectral density

R (T)
p(7) = xy Normalized cross-correlation functionPX y Ty
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= (x- x) Standard deviation of probability

density p(x)

+ Expected value of positive

crossings per unit time of the level a

h(T ) Unit impulse response function

H(f) Frequency response function

F Modulating frequency

Rotor angular velocity

R Rotor radius

U Advance ratio

Blade flapping angle, positive up

Mean blade angle of attack

a Lift slope

c Blade chord

7Blade inertia number

p Air density

w Vertical gust velocity

SU (f) Power spectral density of mean

angle of attack

I (f) Average power spectral density or

blade flapping angle
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al c
Constant coefficients in the blade

a2 c2  flapping equation defined by

a3 c 3  eqn. 3.3.9

B(f) Fourier transform of B(t)

A(f) Fourier transform of a(t)

El Blade bending stiffness

y Vertical blade deflection, positive up

T Blade axial tension force

m Blade mass per unit length

r Distance of blade station from

rotor center

xn Distance from rotor center to

midpoint of nth blade element

In  Length of nth blade element

mn  Average mass of element n,

concentrated at point xn

Yn Bending deflection at point xn,
positive up

c n  Damping coefficient for blade

element 1n, concentrated at

n



On  Slope of blade element n

in
(EI)n+1 Blade bending stiffness at point xn+ -

Fn  Average imposed force on blade

element 1n. at point xn

Sn+1 Shear force between blade elements

n+1 and n,positive up on element n

Tn+1 Axial tension force between blade

elements n+1 and n, positive in

x direction on element n

Mn+1 Spring moment between blade

element n+1 and n, positive,

when counterclockwise on element n

Kn+1. Spring constant of spring between

element n+1 and n

Lw) Influence coefficient matrix with

element Wjk

k] Stiffness matrix with elements kjk

[I Unit matrix

Im] Mass matrix

[c] Damping matrix

if(t)j Exciting force column with

element fk

Complex natural frequency



[Rf(r Force cross correlation matrix

with elements

Rjk() = E [fj(t)fk(t+ rj

S f( Force cross power spectral density

matrix with elements

s w) = E F( )Fk(W

IF( w ) Fourier transforms of exciting

force column with element Fk( w)

RY( T7 Deflection cross correlation matrix

S(w Deflection cross power spectral

density matrix

[A] Modal matrix with elements Aj ,
where the latin subscript refers

to the station and the greek

subscript to the mode

Diagonal matrix of natural

frequency squares of system without

damping with elementsi w'

[- Inverse of a matrix

T
[1 Transpose of a matrix

Column vector

T  ecr
Row vector



JIM] Diagonalized mass matrix with

element p,

feJ Diagonalized stiffness matrix

with element x,

Ph Column of nQrmal deflection

coordinates with elements 1,

Column of normal force coordinates

with elements ~,

Column of normal damping over

Cj critical damping ratios with

elements 4

[M] Transformed mass matrix defined

by eqn. 4.4.4

[K] Transformed stiffness matrix

defined by eqn. 4.4.5

[S] Stress-deflection matrix

U Stress

Superscripts:

Conjugate complex

Time differentiation

Time average except in Section 4.4

where the bar denotes quantities

in comlex normal mode analysis
complex normal mode analysis
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Notation in Appendices:

Appendix A:

A(t) Periodic time function

2 7/, Period of periodic time function

ck  Complex Fourier expansion coefficient

Appendix B:

01' e2 , 3 Phase angles in generalized blade

flapping equation defined by.eqn. B-I

0* Frequency interval
2v

S= A constant integer

k = Discrete variable

Sk( ) = SE (ku,) Average power spectral density of

blade flapping angle at end of

kth frequency interval.
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1. Introduction. The Significance of Lifting Rotor Random Loads

As of now the problem of lifting rotor dynamic loads

and vibrations has been treated almost exclusively on the

basis of deterministic modeling. In the most advanced treatment

the flow field in the vicinity of the rotor is computed from

the system of vortices generated by the blades, and the dynamic

response of the blades is obtained by computing the interactions

between the flow field and the blades. In comparing computed

and measured dynamic loads and vibrations, it.is necessary to

assume stabilized flight conditions. Maneuver and gust dynamic

loads and vibrations are treated as transients between stabilized

conditions.

This deterministic model of the generation of dynamic
lifting rotor loads and vibrations is in many respects unsatis-

factory. Even under the steady flow conditions for lifting
rotor models in wind tunnels the blades perform sizable random
motions indicating the gross turbulent character of the rotor
inflow. In flight this local turbulence of the inflow is super-
imposed to the atmospheric turbulence and to pilot control

inputs which are both of a random nature. It would, therefore,
seem appropriate to try to treat the problem of lifting rotor
dynamic loads and vibrations with probabilistic modeling techniques.
Such techniques have been successfully applied to the problem of
airplane gust responses, see for example Ref. (1) and (2).
Airplanes with known dynamic response characteristics are used
to measure parts of the atmospheric turbulence spectra, and
these spectra are then used to predict the gust responses of

new prototype airplanes in the design stage. It is conceivable

that an approach along these lines could be very useful for

the prediction of lifting rotor dynamic loads and vibrations,
though the problem is here much more involved than for airplanes,

because of the numerous significant degrees of freedom and the
complexity of the random phenomena associated with the rotary
wing aircraft. It is rather surprising that apparently no

previous efforts in.this direction have been made although for

some widely differing lifting rotor problems a description of
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the underlying phenomena by random process is called for.

The only indication that work in this area is planned was found

in Ref. (3) which describes a test set-up suitable for measuring

the response of a beam to lateral random loads.

The stochastic methods developed to analyze airplane

responses to atmospheric turbulence or to define atmospheric

turbulence by airplane response measurements are not applicable

to lifting rotors for two reasons:

First, the coefficients* 6f the equations of motion

of lifting rotors are time variable rather than constant as

for airplanes. Second, the widely made assumption that the

vertical gust velocities over the wing span can be approximated

by a single stationary random process is not valid for rotary

wings. The rotor blade will have to be subdivided in a number

of elements whereby the vertical velocity components at- different

elements will be represented by different non-stationary

correlated random processes. The multiplicity and non-

stationarity of the random processes associated with rotary

wings invalidates the widely used relation according to which

the ratio of output over input power spectral density equals

the square of the system transfer function. Unlike airplanes,

it will be necessary to consider variations of the turbulence

spectrum along the span of the blade. The problem then would be

to derive such a distribution of the turbulence spectrum over

the blade span from the measured blade motions, or in a design

situation, to derive the blade random vibrations fr6m a given

distribution of the turbulence spectrum over the blade span.

For this reason neither the theoretical nor the experimental

methods available for determining airplane responses to

atmospheric turbulence can be adopted for lifting rotors, and

new theoretical and experimental techniques must be developed.

Six types of lifting rotor problems'where the applica-

tion of random process concepts appears to be promising will

be briefly discussed.
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1.1 Lifting Rotor Response to Atmospheric Turbulence

In order to study the lifting rotor response to atmos-

pheric turbulence one could think of testing a rotor model

in a wind tunnel equipped with a gust generating system.

Such a system has been installed in the NASA Langley Transonic

Wind Tunnel and is described in Ref. (4). The system simulates

a low amplitude continuous sinusoidal vertical gust. Under the

usual assumption made for frozen wing aircraft - the vertical

gust velocity can be represented by a single stationary random

process - it is sufficient to measure the model response to

sinusoidal vertical gusts over an adequate frequency range,

since one needs only the system transfer function. For lifting

rotors, however, for reasons explained before, the knowledge

of the transfer function is not sufficient. The gust generator,

in order to be applicable to lifting rotor models, mustbe

capable of producing the entire gust spectrum with the proper

amplitude ratios. No such device has apparently been designed

or built anywhere as yet. Correspondingly, a theoretical

computation of system transfer functions, as it is performed

by the various sophisticated computer programs developed for

lifting rotors, is also not adequate for the problem of lifting

rotor response to atmospheric turbulence, and considerably

more elaborate programs will have to be developed for this

purpose.

1.2 Stopping and Folding of Lifting Rotors in Flight

The helicopter industry is vigorously working on

problems of stopping and folding of lifting rotors in flight

in an effort to develop air vehicles which combine the

hovering efficiency of the helicopter with the cruising

efficiency of high performance airplanes. Wind tunnel tests

have been conducted to study the stopping and folding process

of lifting rotor models in a steady flow. Because of .the

crucial effects of atmospheric turbulence these tests cannot

be considered realistic. Even if the transfer functions were

to be determined analytically or experimentally in a wind tunnel

with low amplitude sinusoidal gust simulation, the results
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could not be applied to the problem 
(except when the rotor is

stopped) because of the frequency 
shifts produced by the time

varying coefficients in the 
equations of motion. The solution

of the problem requires new methods 
of analysis, and in an

experimental approach the model 
must be subjected to often

repeated stopping and starting 
conditions with a simulation 

of

the full turbulence spectrum.

1.3. Lifting Rotor Hovering Performance

In spite of several decades 
of lifting rotor research

and development, hovering performance 
prediction for new types

of rotors is still quite poor. The widely accepted and contin-

uously refined methods of performance 
prediction very often

miss the mark by relatively large 
margins. A 10% overestimate

of hovering performance is usually 
equivalent to 30 to 50%

overestimate of payload and can 
have very serious consequences.

It is also known that certain types 
of atmospheric turbulence

can considerably degrade the helicopter 
OGE hovering performance.

Great progress has recently been 
made in the computation

of the vortex wake system generated 
by a hovering lifting rotor.

These computations, in agreement with 
test observations, have

shown that the trailing vortices 
of one blade can get into the

path of the subsequent blade 
whereby considerable drag increases

and lift losses occur. The presence of atmospheric turbulence

will amplify this tendency. A satisfactory definition and

prediction of lifting rotor hovering 
performance should,

therefore, include the effects 
of'atmospheric turbulence and

the associated random control inputs.

14.. Unsteady Blade Aerodynamics

Another area of lifting rotor research 
where lately

considerable progress has been made 
is that of unsteady blade

aerodynamics, particularly in 
the region of partial blade

stall. The unsteady stall phenomena are 
highly complex and

very much dependent on the time 
history Of blade angle of attack

changes. Atmospheric turbulence will probably 
have a large

effect on unsteady blade stall. 
Since the blade stall phenomena

provide the forward speed limitation of most 
rotary wing



-5-

aircraft, theory and testing in this regime also seems to

require the application of the concepts of random processes.

1.5 Vertical Descent in the Vortex State

Another flight condition where the lifting rotor

loads are basically of a random nature, is the descent in

the vortex state. Both rigid and flapping rotors show large

thrust variations beginning at quite small vertical descent

rates and becoming maximum at the fully developed vortex

state inflow pattern. Such thrust variations have been

described for example in Ref. (5). A theory using random

process concepts would appear to be suitable for this flight

condition.

1.6 Transition from Hovering to Forward Flight and Vice Versa

It is well known that most helicopters have a slow

speed range corresponding to advance ratios between .05 and .10

where dynamic blade loads and vibrations are much higher than

in cruising flight. Take-off and landing maneuvers fall into

this slow speed range and contribute to the high level of

dynamic loads and vibrations. Flow through the rotor disk

is Strongly non uniform and wake recirculation takes place.

No adequate deterministic theory of this complex flow state

has been established as yet. The transition phenomenon also

appears to be a promising candidate for the application of

random process theory.

The preceding six cases where lifting rotor responses

to random inputs are of importance are by no means exhaustive.

It is also not at all obvious how to approach these problems.

Their listing here has merely the purpose to provide some

motivation to the search for suitable methods of treating lifting

rotor random loads and vibrations.
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2. Survey of Random Process Theory Related to Lifting Rotor

Problems

Random process theory so far has been predominantly

applied in communication and automatic control engineering.

Its application to mechanical systems and structures is still

quite limited. A number of good textbooks on random process

theory and measurements have recently been published, for example

Ref. (6) and (7), and some modern textbooks on mechanical

vibrations contain a chapter on the response of structures to

random inputs, see for example Ref. (8). Most of the

literature deals with constant parameter linear systems subjected

to a stationary random input. Very little work exists on non

stationary random inputs as they occur in lifting rotors,

and no previous work was found on the computation of responses

of time varying linear systems to'random inputs which is

required in the random flapping and flap-bending analysis of

lifting rotor blades. The response of complex structures with

many degrees of freedom subjected to multiple correlated random

inputs has only very recently been treated in a few papers,

see for example Ref. (9) and (10), and the best approach to

this problem which must be solved for the lifting rotor, is by

no means obvious. This section gives a brief survey of random

process theory as related to lifting rotor problems.

2.1 General Remarks on Random Processes

A random process is defined as an ensemble of random

sample functions x(t) which can be described by a variety of

probabilistic measures. The first order probability p(xl)

gives the distribution of x1 = x(t1 ) over the ensemble at the

time t l . For the sake of simplicity we will assume here that

the expectation or mean value of x(t) is always zero:

x= E[ x(t)] = xp(x)dx = 0 2.1.1

The second order probability p(Xl,x 2 ) gives the joint distri-

bution of x1 = x(t 1 ) and x 2 = x(t 2 ) at the times t1 and t2.

The expectation of the product X 1 X 2 is called the autocorrelatioin

function Rx(t ,t2 )



-7-

R (t 1 ,t 2 ) = E [xjx 2 ] x 1xY 2 p(xl,x 2 )dxdx2  2.1.2
-COb

and is in general a function of both t1 and t2.

Higher order probabilities p(xl,x 2 ,X3 ,...) and higher

moments E (x 1x2X 3 ...] can be defined and are necessary for a

complete description of a random process. Usually one limits

the description to the first and second order probabilities.

For the special case of a normal or Gaussian process, such a

description is complete.

In the case of two correlated random processes with

sample functions x(t) and y(t) there exists a second order Joint

probability P(xl,Y 2 ), where xl = x(t 1 ); Y2  y(t 2 ). The

expectation of the product x1Y 2 is called the cross-correlation

function Rxy(t 1t 2 )

Rxy(t1t 2 ) = E[xl Y 2 ] = xlY 2P(x1'Y 2 )dxldY2  2.1.3

We now introduce the complex sample Fourier transforms of the

sample functions x(t),y(t)

X(f) = J x(t)e - i12ftdt
-CO0 2.1.4

Y(f) = 5 y(t)e - i2rfdt

with their inverse

x(t) = 5 X(f)ei2 ftdf
-Cf

CO2.1.5

y(t) = Y(f)ei2rftdf
-CO
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The probabilistic measure in the frequency domain

which is equivalent to Rxy (tlt 2 ) in the time domain is the.

expectation of the product of complex sample Fourier transforms

E [X*(f1 )Y(f 2 )] which is called the double frequency cross-

spectral density. It can be shown that it is related to the

cross-correlation function by

Sxy (f2) = E [x*(fl)2y(f2)R] fRy(t 1Vt 2)ei2(f t1-f2t2)dtdt 2

2.1.6

The inverse relation .between cross-correlation function and

double frequency cross-spectral density is given by

Rxy(t,t 2) = Sxy(f 1,f2 )e-i27(f1 tf2t2)dfldf2  
2.1.7

The corresponding relations between auto-correlation function

and power spectral density are obtained by replacing Rxy by Rx,

Sxy by Sx and Y(f 2 ) by X(f 2 ).

Random processes are called weakly stationary if the

first order probabilities are independent of time and if auto-

correlation and cross-correlation functions depend only on the

time difference r = t2 -t I and not on t1+t 2 . In this case

one can prove the inequality

IRxy(-) 12 < Rx(O)R(O) 2.1.8

which.allows to define the normalized cross-correlation function

R (7) R (7)
P (7) xyR x 2.1.9
xy R (O)R (0) y
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where x and y are the standard deviations of the time

independent probability distributions p(x) and p(y). For

x = y one obtains

IRx( 7) -< Rx(0)I Ox2 2.1.10

If in the time domain Rxy(t' ,t 2 ) depends only on r7= t2-t I

and not on t1+t2 , it can be shown that in the frequency

domain Sxy(flf 2 ) also reduces to a function of a single

frequency given by

Sxy(f ) = E X*(f)Y(f) Rxy()e -i2fT dTr 2.1.11
-00O

For x = y this reduces to

SX(f) E [X(f)X(f) .2.1.12

In words: The power spectral density of a stationary random

process is .the expectation of the product of a sample Fourier

transform with its conjugate complex value.

If the expected values taken over the ensemble of

random functions are equal to the corresponding time averages

taken over a sample function, the stationary process is called

ergodic. In this case

T

Rxy( r ) - E [xY2 = T d i x (t)y(t+7 )dt 2.1.13

While the double frequency power spectral densities of non-

stationary random processes cannot be measured unless an entire

ensemble of random functions is available, S (f) and S (f)

for stationary ergodic processes. are measurable, if only a
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single sample function is given. In order to obtain S,(f )

one merely has to send the signal from a random sample

function through a narrow band pass filter with the center

frequency f and band width Af and square and average it over an

adequately long time period and divide the result by Af.

For a ergodic process - again assuming zero mean

value of the random function - the standard deviation Ox
of the probability distribution can be expressed either by the

value of the autocorrelation function for 7= 0 or by the

integral over the power spectral density:
T

2= x2 p(x)dx Tim x2(t)dt Rx(O)= S (f)df
2.1.14

Thus, for an ergodic process, the standard deviation of the

probability distribution over the ensemble of random functions

at any given time t equals the root mean square value taken over

any sample function and can be obtained also by integrating

over the power spectral density distribution. For an ergodic

random process the time rate of the random -function is uncorre-

lated to the function value at the same time. The standard

deviation of the time rate is given by either one of the

4 expressions:
T

2 (J)d = 3 ()dt = -Rx0 (0) (27f)2 Sx(f)df

2.1.15

An important concept applicable to the fatigue of structures.

under random loads is the expected number of crossings of a

certain level per unit time. For a normal random process

one can show that the expected value of positive crossings

per unit time of the level a is given by
2

0= e 2.1.16



Making use of the two preceding equations the expected value

of positive zero crossings (a = 0) per unit time is

-00

+ _J(2rf)2Sx(f)df

Sx(f)df 2.1.17

For a narrow band process almost every positive zero crossing

leads to a full cycle, so that this equation, when applied to

narrow band processes, also gives the expected value of cycles

per unit time which is important in fatigue considerations.

2.2 Response of a Constant Parameter Linear System to a

Stationary Random Input

A linear dynamic system with constant parameters can be

described by the unit impulse response function h(r). For a

general input x(t) the system response is then given by the

convolution integral

y(t) = f h( T)x(t-r )dT 2.2.1

Taking the Fourier transform on both sides of this equation

results in the relation

Y(f) = H(f)X(f) 2.2.2

where

H(f) = h(T)e -i2f dT 2.2.3

is the complex frequency response function of the system.

For stationary ergodic random inputs one determines the response

auto-correlation function by taking the expected value of the

product y(t)y(t+ t). !With the help of the convolution integral

this results .in the following relation between input and response

outo-aprrelation function:
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R( ) h( ( )h(7 )Rx(T+l - )df dq 2.2.4

0

The corresponding relation in the frequency domain is

Sy (f) = I H(f) I 2 x(f) 2.2.5

All terms in this simple equation are real. The response

standard deviation is given by

2 = i H(f) I 2 Sx(f)dv 2.2.6
-00

and oy is again equal to the root mean square value taken

over a sufficiently long time period of a sample response

function.

The relation according to which the response power

spectral density is equal to the input power spectral density

multiplied by the square of the complex frequency response

function is very widely used in many applications of random

process theory. However, its validity is strictly limited

to the case of a constant parameter linear system with a

single stationary ergodic random input.

2.3 Response of a Constant Parameter Linear System to a

Non Stationary Random Input

A general solution of this problem has been developed

by Caughey in Ref. (11) in form of complex double and triple

integrals. The practical problem is that, except in special

cases, the complex double frequency power spectra associated

with non stationary random processes, cannot be measured with

a single sample function, since it takes the entire ensemble

of functions to define the variation of its probabilistic

measures with time. There are, however, two special cases

where the power spectral densities associated with non stationary

random processes can be defined- and measured when only a single

sample function is available, In both cases the non stationarity

is due to a deterministic time trend. Such phenomena have been

treated in Ref. (12).
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In the first case the time trend is slow as compared

to the random instantaneous fluctuations, so that the pro-

babilistic measures can be determined with a single sample

function by selecting an averaging time which is sufficiently

long to obtain statistically meaningful values for the auto-

correlation function or power spectral density but which is

sufficiently short to exclude substantial effects of the slow

time trend. Random processes which allow such measuring proce-

dures are called locally stationary.

In the second case the deterministic time trends are

periodic so that time averages of autocorrelation function and

power spectral density can be defined, Since this case is

important in lifting rotor theory it will be discussed here in

more detail. We assume that x(t) is a sample function of a

stationary ergodic random process and we would like to know the

average autocorrelation function and the power spectral-density

of the modulated random sample function y(t) defined by

y(t) = x(t)cos27Ft 2.3.1

The autocorrelation function is:

Ry(tlt 2) = E [x(t )x(t2 )] cos 2rFtlcos2rFt2

= (1/2)Rx( 7 )(cos27Fr +cos27F(t 1+t2 )) 2.3.2

where T= t2 -t

Averaging over a sufficiently long time period, the last term

will disappear and one obtains for the time averaged auto-

correlation function

(7) = (1/2)Rx(r )cos2rF 2.3.3



The average autocorrelation function of the modulated stationary

random function x(t) is obtained by multiplying Rx( t) with

(1/2)cos2F .
The corresponding power spectral density can be either

obtained by using the relation

Sy (f) Rx(7 )ei 2 fT dr 2.3.4

or by taking the Fourier transform Y(f) of y(t) and inserting

it in the definition

y (f) = E [Y(f)Y(f)] 2.3.5

The result is in either case

(f) = (1/4) [SX(f-F)+S(f+F) 2.3.6

This power spectral density would be measured if a sample

function y(t) were analyzed in the usual way by sending the

signal through a band pass filter with a band width Af which

is small as compared to F and by squaring and time averaging

over a time which is large as compared to 1/F. If the response

power spectral density of the constant parameter linear system

with the forcing function y(t) were determined in the same way,

it would be given by jH(f)_, 2S (f), where H(f) is again the

complex frequency response function of the system.

2.4 Response of Time Variable Linear Systems to Random Inputs

A linear system with time varying parameters - like a

lifting rotor flapping blade - can be described by the unit

impulse response function, which now is not only dependent

on the time 7 elapsed since applying the unit impulse, but

also on the time t at which the impulse had been applied: h(r,t).
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In general the computation of h(7,t) is not possible in closed

form and numerical methods are required to find approximate

solutions. For a general input x(t) the system response is

again given by the convolution integral

y(t) = h(-,t)x(t-r)d 2.4.1

The frequency response function is also time variable and

determined by

H(f,t) h(T ,t)e-i2 v f r dT 2.4.2

-CO

Taking the expected value of the product y(t 1)y(t2 ) one obtains

with the help of the convolution integral the foilowing relation

between input and response autocorrelation function:

R (tlt 2) = fh( 4,ti)h( ,t2 )Rx(t ~ ,t 2-' )de d7 2.4.3

The corresponding relation in.the frequency domain is

S(flf 2) = 17 Sx( , J*( -f)J( d4, -f2)4 d? 2.4.4

where

J( ,f) = r H( ,t)ei2 vftdt 2.4.5

Apparently no attempt has been made as yet to solve these

equations for an actual problem. A solution would be extremely

difficult, since already'the unit impulse response h(r,t)

is not given analytically but must be approximated by numerical
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methods. The solution then requires triple infinite integrals

over non analytical complex functions. Furthermore, as men-

tioned before, the input and output double frequency power spectra

cannot be measured with a single sample function. However,

if the variable parameter system is electronically simulated

the input-output relation for power spectral densities can be

experimentally observed under certain conditions.

2.5 Response of Linear Systems to Multiple Random Inputs

The application of random process theory to complex

structures with multiple random inputs - even assuming

stationarity - has not as yet progressed to a point where a

good understanding of the various possible and necessary

approximations has been achieved. The problem of random

blade flap bending is therefore presented in Section 4 in

considerable detail. A substantial simplification is possible

if, as usually assumed, the damping of the structure is small

so that normal mode cross damping terms can be neglected.

Unfortunately, lifting rotor blades have large aerodynamic

damping at least in the low frequency modes and not all cross

damping terms are negligible. In this case, it may be simpler

to transform the second order differential equations of the

structure into an equivalent system of first order equations

with respect to time. The normal modes are then complex and

more difficult to handle, but the frequency response function

is much simpler than for a second order system. Section 4

includes the general solutions both for a second order repre-

sentation with real normal modes and for a first order repre-

sentation with complex normal modes.
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3. Random Blade Flapping

For sufficiently slow excitation the lifting rotor blade

will respond mainly in its fundamental mode, that is in the

blade flapping mode'. For blades attached to the hub with

flapping hinges, this is a rigid blade mode. For blades without

flapping hinges the mode involves flap bending, however, in

first approximation one can substitute rigid flapping about an

off-set hinge. In the following a very simple analytical

blade model is assumed which is adequate to discuss the basic

problems of a random loads and vibration analysis.

3.1 Assumptions

It is assumed that the atmospheric turbulence affecting

lifting rotor blade flapping consists of vertical velocity

fluctuations which are uniform over the rotor span and which

have a wave length which is large as compared to the effective

rotor diameter. This type is called one-dimensional isdtropic

turbulence and is frequently used for airplane turbulence

response calculations, see for example p. 21 of Ref. (1).
In a first order blade flapping theory valid for

small flapping angles 0 , zero flapping hinge off-set and for

moderate advance ratios p , one obtains the following equation

of motion (see for example Ref. (13), eqn. (15))

+ -(1+ 4 u sint) +(1+ -- cost) = (1+ 3 sint) 3.1.1

The equation has been linearized both with respect to the

flapping angle 0 and with respect to the rotor advance ratio .

The time unit has been selected so that the rotor angular velocity

1 is one. The only blade parameter in the equation is the

non-dimensional blade inertia number 7 which for practical

rotors has values between 2 and 10. Actually, the blade angle

of attack a should vary both with radius and with azimuth

angle. However, in this simple mathematical model an average



value E has been assumed which is independent of radius aind

blade azimuth angle and which is directly proportional to the

vertical gust velocity. Using .7R as effective rotor radius,

the relation between vertical gust velocity w and & is:

S= w 3.1.2.71 R

Thus, the average angle of attack i directly reflects the

atmospheric turbulence and is under the usual assumptions a

stationary random function.

The stationary random process a , according to the

blade flapping differential equation, is modulated by the

deterministic time function (1+ P-sint) and this non-stationary

random input acts on a linear system with periodically varying

parameters. In a more refined analysis considering the varia-

bility of the angle of attack with radius and with blade

azimuth, N would be replaced by the product of w with a deter-

ministic time function.

From the physical aspects of the problem it is clear,

that the assumption of a locally stationary process, discussed

in Section 2.3 is not satisfied for B or 6sint. The time trends

from sint and cost are not slow as compared to the gust velocity

fluctuations.

3.2 Small Advance Ratio

For small advance ratio A the periodicity of the para-

meters in the. blade flapping equation can be neglected.

In this case the average power spectral density of the random

input can be easily computed, since the modulated angle of

attack i sint has the average power spectral density

1/4 [SU (f- 1)+S6 (f+ )] 3.2.1

see Section 2.3 (the relation given in Section 2.3 for the

modulating function cos27Ft is also valid for sin2rFt).



If H(f) is the complex frequency response function for the blade,

which, for constant parameters, has the value

H(f) = 1
-(2wf)2 +i27rf +1 3.2.2

one obtains for the average power spectral density of the

flapping angle 0 the value:

S2 (f)I \(f 2 [ 2~) 1 (A\ (f- 2-)+sir (f+t 1rI
3.2.3

In the absence of a solution for periodically varying para-

meters it is not possible to quantitatively establish the

advance ratio range p for which the above solution is a good

approximation. It would appear, however, that an advance

ratio of i = .1 should show a negligible effect of the

iA -terms in the factors of 0 and . It is noteworthy that

this advance ratio range includes the region of.transition

from hovering to forward flight and vice versa, during which

considerable random loads and vibrations are encountered.

3.3 Moderate Advance Ratio

Inasmuch as up to now the only non stationary random

processes which are analytically manageable are stationary

processes which are modulated by a time function (such pro-

cesses are treated in Ref. (12)), one might try to find a

solution to the blade flapping equation 3.1.1 by assuming

that the flapping angle p represents a stationary random

process multiplied by a periodic time function. Since the

input random process is of this type it may not be unreasonable

to expect that at least to a certain approximation the response

random process is of the same type. When time averaging the

autocorrelation function of such a process one finds that the

result depends only on r= t2 -tl, not on t or t2, same as for
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stationary random processes. In the.frequency domain, time

averaging amounts to multiplying the double frequency power

spectral density with the delta function 5(f 2 -f), thus

reducing it to a single frequency power spectral density.

This is shown for the general case of a periodic modulating

function in Appendix A. Here we will consider the special

case

y(t) = x(t)cos2Ft 3.3.1

treated in Section 2.3. x(t) is again a sample function of a

stationary random process. According to eqn. 2.1.6 the power

spectral density for y(t) is:

Sy(fl'f 2 ) = E[Y (fl f 2) 3.3.2

Applying the postulated rule, that time averaging corresponds

in the frequency domain to multiplication of the double

frequency power spectral density with 6(f 2 -fl), one obtains

for the power spectral density of the random process with time

averaged autocorrelation function

S(fl) = Sy(fl f2) b(f2-fl) 3.3.3

or (f) = E [Y (f)Yf) 3.3.4

Since Y(f) = 1/2(X(f+F)+X(f-F)) and 3.3.5

since E[X(f+F)X(f-F)] = 0 3.3.6

one obtains

S(f) = 1/4 s (f+)+S(f-F] 3.3.7
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in agreement with eqn. 2.3.6. In particular, we have for the

power spectral density of the time averaged random process the

rule, that the sample Fourier transforms are uncorrelated

for different frequencies:

E Y (f (f 2 ]  = 0 for f f2 3.3.8

same as for stationary random processes.

Let us now assume that.the random process with sample

function 0(t) from eqn. 3.1.1 is of the type, where the

averaging rule applied. We first write eqn. 3.1.1 in the form

'+(c1 +alsint)4 +(c 2+a 2 cost)# = (c3+a 3sint) 3.3.9

This equation is Fourier transformed by considering the following

function pairs

0(t) - B(f)

cost 0(t) - (1/2) B(f - )+B(f+ )

0(t) -- 2rifB(f) 3.3.10

sint 0(t) * f I (f- -)B(f- 2)-(f+ 2+)B(f+-)

(t) "-- -(2rf)2B(f)

One then obtains

-(2nf 1 )2B(f1)+cl2iifjB(fl)+ar (f- p)B(f- 1

(+ )B(+ +c 2B()+ B( )+B(+

c A(fl)+ 7 f UT+A(fl+ 2r 3.3.11
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The conjugate complex equation with f2 instead of fl reads:

-(2f 2 ) 2 B (f 2 )-cl2 if 2 I(f 2 ) + al r (f 2 - )B (f2~2( (f2 f2 2v 2r

-(f 2  )B*(f ) +2B*(f2)+ 2B (f )B(f

*( 2 )+ + *(f2  2 ) 3.3.12

Multiplying the last two equations with each other and taking

the expectation of the product leads to an equation for the

double frequency spectral density S (fl,f 2). Multiplying this

equation further with S (f2-fl) reduces the double frequency

spectra to single frequency spectra corresponding to the time

averaged autocorrelation function. In this final equation

the imaginary terms cancel each other:

' (f) (2rf) +(c2f) 2 -2c 2 (2wf) 2 +c 2 2
2 2

,r, (f+ ) 2(f+ -a 2r(f+ )+2r)

2 2
al 12 a a2  1 a2

+ f- ( (2 (f - 1-) + 2(f- -)+ ---
2

3'
=c 2 S (f- )+Si (f4 3.3,13

We have here a functional equation between SZ (f) and Se (f)

which can be approximated by a system of linear equations

valid at the frequency points O, Af, 2Af . . By inverting

this system of linear equations 58 (f) can be obtained from

S& (f). The details of the computation are presented in Appendix B.

Again, in the absence of a rigorous solution of the

problem it is not possible to establish the advance ratio

range for which eqn. 3.3.13 is useful. An attempt has ,been

made to compare the result of eqn. 3.3.13 for a number of

cases with the results of simulator studies. As of now,

the comparison is not conclusive.
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Numerical computations of E (f) in Appendix B,

assuming a blade inertia number of 7 = 4 and an advance ratio

of A = .3 have shown, that for typical power spectral density

distributions SU (f) equation 3.3.13 gives a blade flapping

power spectral density S (f) which is approximately identical

to.that obtained with equation 3.2.3. It would then appear,

that the damping and stiffness variation in eqn. 3.1.1 is

negligible up to an advance ratio of u = .3. The reason for

this.result is that for y = 4 and = .3 the numerical values

for al 2, ala2 and a22 are two orders of magnitude smaller than

the numerical values for cI and c2 .
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4. Random Flap Bending

Though ultimately the problem of random blade flap

bending will have to be solved for non stationary random

inputs including the periodic parameter variations of the

system, the analysis in this section ignores the non stationary

character of the input and the time variability of the para-

meters. Nevertheless, the many degrees of freedom and the

multiple correlated random inputs require a rather complex

analysis. The usual variability of stiffness and mass over the

blade length make a rigorous solution of the dynamic problem

not feasable and numerical approximations must be developed.

The method selected here makes use of influence coefficient

and stiffness matrides derived from a certain discretization

of the blade.

Three types of analysis are outlined. For the first

type the system response is computed directly with the general

admittance matrix. For the second type the response is com-

puted with the help of the real normal modes of the undamped

system. Under certain conditions normal mode cross damping

terms are negligible and the admittance matrix is diagonalized.

If these conditions are not satisfied a third type of analysis

is possible where the second order differential equations with

respect to time are transformed into a first order system.

The eigenfunctions of this system are complex, but the admittance

matrix can be diagonalized for this system without any limita-

tions.

The discrete blade element considered in the present

analysis is a simple one - a rigid element in which the bending

stiffness is simulated by introducing torsional springs at the

ends. The matrix formulation of the problem is not much more

complicated if, instead, elastic elements with constant or

linearly varying strains are used as suggested for example in

Ref. (14).
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4.1 Derivation of Blade Stiffness Matrix

In a rotating reference system the equation for the

vertical deflections y (positive up) of a rotating blade in

hovering, using quasistatic aerodynamics and neglecting coupling

with chordwise bending and torsion reads (see for example

Ref. (15))

(Ely") -(Ty') +my+ac-p - = acap (2 4.1.

Instead of solving this differential equation by

numerical methods the blade is subdivided into a number of

rigid elements connected by torsion springs in the way shown

in Fig. 1. Mass, aerodynamic damping, and imposed external

forces are assumed to be concentrated at the element midpoint.

In order to obtain the influence coefficient or stiffness

matrix of the discretized blade, we assume forces Fn acting

at the element midpoints and compute the vertical deflections

y at these points from the equilibrium equations.

The horizontal force equilibrium equations

Tn+ +mnxn 2 Tn  0 , n = 1,2...m 4.1.2

are uncoupled from the remaining blade equilibrium equations

and can be summed to obtain the tension force Tn:

m 2
Tn p = + p p  4.1.3

p n+l

m designates the furthest out blade element at the blade tip.

The moment equilibrim about the left endpoint of

element n is expressed by the equation

in-M S l + , .1.Mni-Mn+1 + Tn-Onln = Sn+11 n + Fn 2 4.1.4
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or, introducing the shearforce

m

n+ = Fj 4.1.5
J = n+l

by the equation

m 1

-M T 0 1 1 F + n 4 .1.6nnn+1 n n n E J+n 2
j= n+1

There are m equations of this type

Introducing the spring constant of the torsion spring at the point

nEIXn+- by

K EIn+1 4.1.7
n+ x n+-xn

the torsion spring equation reads

SMn+1 4.1.8
n+1- n Kn+1

For the cantilever blade there are m equations of this type.

For a hinged blade the first torsion spring equation is

replaced by the boundary condition M = 0.

Finally the relation between slopes 0 n and vertical deflection

Ynis obtained:

1 1
y -y = n In+1 1.9
Yn+l-Yn 2n + n+1 2 4.1.9
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There are m equations of this type, the first one having the

form 1

Yl = 0 i-

Thus the 3m unknowns y 1'Y*m' e1 ... (m, MI...m are uniquely

defined by the 3m equations 4.1.6, 4.1.8 and 4.1.9. Since the

last set of equations is independent of the first two sets,

e9... em , M1...Mm are calculated from equations 
4.1.6 and

4.1.8, while eqn. 4.1.9 is required for the calculation of

the influence coefficients. Once the influence coefficient

matrix [w] with the elements y

jk Fk
has been computed, the stiffness natrix [k] is obtained by

inversion, since

[w] [k] = 4.1.10

4.2 Response Analysis with General Admittance Matrix

The equations of vertical motion for an assemblage

of discrete blade elements have in matrix notation the form

[m] Y + [c] [j} + [k] jy} = If} 4.2.1

In subscript notation these equations read

mkk + + ckA + kkjYj = fk k = l,...m.

[m] , [c] and [k] are the mass, damping and stiffness

matrices respectively. For the blade flap bending problem

mass and damping matrices are diagonal, however, the theory

is developed here for the general case of non diagonal mass

and damping matrices. Various aspects of the response analysis

of linear systems under random excitations are presented in

References (8), (9), (10), (16), (17). The common features

in all these investigations are the following:
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i) discretize the continuum to obtain a tractable spectral

representation of the exciting system of random loads

in different elements by different correlated random

processes.

ii) under the hypothesis of weakly stationary and ergodic

behaviour of the random process determine the output

power spectral densities from admittance matrix and input

power spectral densities.

The complex admittance matrix for the system defined by

equation 4.2.1 is

[H() = H- m + i Cc] + [k] 4.2.2

This expression replaces the frequency response function given

in eqn. 3.2.2 for blade flapping. w has been substituted

for 2rf. The complex natural frequencies are obtained as the

roots of the characteristic equation

X2 m] + X [] + [k] 0 4.2.3

Under weakly stationary and ergodic. assumptions, the

input power spectral density and the admittance matrix

completely describe the output power spectral density. The

power spectral densities now occur in form of matrices.

For example the matrix [S(w)l with elements S k(u) is

defined by

Sfk(w) = E[F( w)F( 4.2

where Fj(w) is the sample Fourier transform of the input

random force acting on blade element J. The deflection or

output power spectral density matrix [SY()] with elements

SYk() is determined by
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This relation replaces eqn. 2.2.5 for a single degree of

freedom system for which the output power spectral density

equals the input power spectral density multiplied by the

square of the frequency response function.

The autocorrelation functions of the single degree

of freedom system is now also replaced by a matrix. For the

input forces we have the cross-correlation matrix [Rf ()]

with the elements R (7) defined by
jk(

Rk(') = E [fj(t)fk(t+) ]  
4.2.6

ForT= 0 one obtains the force cross-correlation matrix

between blade elements

0o

[Rf(o) = fsf(w)i 4.2.7

and a similar expression for the deflection cross-correlation

matrix

R (0)] = [S(w 4.2.8

This expression replaces eqn. 2.2.6 for a single degree of

freedom. The diagonal terms of RY(O represent the

mean square deflections of the various blade elements and

the off-diagonal terms represent the deflection cross

correlations between different blade elements.

In principle, given the input power spectral density

matrix [sf(W) and the complex admittance matrix H()] ,

the output power spectral density matrix SY( can be

computed from eqn. 4.2.5. It is noteworthy that this analysis

can be performed without making any assumptions with respect

to the damping matrix. But a major drawback is the manipulation

of the admittance matrix containing complex elements. These

difficulties are avoided in a modal analysis for which the

admittance matrix is diagonalzoid.
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4.3 Real Normal Mode Analysis

For many structural problems it is adequate to perform a

normal mode analysis with the modes of the undamped system. If

the damping is distributed in a certain way, or if normal mode

cross damping terms can be neglected, one obtains in such a normal

mode analysis uncoupled differential equations for the normal

coordinates. Eqn. 4.2.1 can be easily transformed in such a way

that the factor [m] in the first term is replaced by the unit

matrix [I] . With the definitions
1 1

= -[m]2 jY ;= - m] 21fl

1 1 1 1

[6] [ m] 2c ] [ [ = [m i 2 [k][ 2

and omitting the bars over all symbols Eqn. 4.2.1 is obtained

in the form

S+ c I + [k] y = {f 4.3.1

where [c] and [k] are symmetrical matrices. The normal modes

of the undamped system are obtained from

[A] 2 [k [A] 4.3.2

[A] is the modal matrix with elements Aj , where the latin

subscript refers to the element number and the greek subscript

to the mode number. The modal matrix [A] can be multiplied

by an arbitrary diagonal matrix and the product would still

satisfy Eqn. 4.3.2. From the symmetry of [k] it follows that

both [A] T [A] and [A] T [k] [A] are diagonal matrices.

Selecting a suitable normalization for CA] one can obtain

[A]T [A] = [I] , 4.3.3

[A]T [k] [A = A2] 4.3.4
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From 4.3.3:

[A] [A]T 4.3.5

The inverse modal matrix equals the transposed modal matrix.

Equations 4.3.2 and 4.3.4 read in subscript notation

2
AjV m = kji Aiv 4.3.6

2U = V 4.3.7

where X == Aj kji Aiv 4.3.8

is an element of the diagonalized stiffness matrix.

If all natural frequencies wv are different, the modal

columns A form a system of linearly. independent vectors

and the expansion theorem holds, for example

Y = [A] } or Yj = A A V, 4.3.9

The r, are the modal deflections.

Inserting Eqn. 4.3.8 in Eqn. 4.3.1 and premultiplying by [A] T

one obtains

[A]T [A] {} + [A]T [c] [A]{A+ AIT k] [A]{ }

[A] T~f 4.3.10

Because of Eqn. 4.3.3 and 4.3.4 this reduces to

i} T+ A] [c] A + l ={} 4.3.11

where the modal force column j(v is given by

A = [A] T{f} or pv=  2 Ajv f 4.3.12

In general the modal equations 4.3.10 are coupled by the cross

damping terms. Only if [c] is of the form

[c] =a + b [k] 4.3.13
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with arbitrary constants a and b is the triple product in

Eqn. 4.3.10, because of Eqns. 4.3.3 and 4.3.4,a diagonal matrix.

In this case one can write

[A]T [c][A] =2 [

and Eqn. 4.3.10 becomes

1i + 2 [& JNfi}+[6 } {O 4.3.14

or y4j+ 2 C+iv+ ? = O1V 4.3.15

If Eqn. 4.3.12 is not satisfied and if the damping is small, the

off-diagonal terms of the triple product [A ]T [c] [A] are often

neglected and the uncoupled equations 4.3.15 are used.

The modal frequency response function for the vth mode is

according to Eqn. 4.3.15

Hv () 1 ... 4.3.16

so that 2i r 2 4.3.17

Inserting {M) in Eqn. 4.3.9 and considering Eqn. 4.3.12 one obtains

y~i A p<) A T 4.3.18yI  = [A] LHL,)J [A] T 4.3,18

The general admittance matrix for Eqn. 4.3.1 defined by

[H( a) [2I] + io[c] + -

is therefore obtained from the diagonal modal admittance

.matrix CH v (,W)J by

4.3.19

or Hij(Ro) - Aiv H, (o) A,
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For a probabilistic description of the response of

discrete systems to random excitation, using real normal modes,

the cross correlations and cross power spectral densities

must be expressed in terms of normal coordinates. We then have

to distinguish between the following cross correlation

functions: (As before, it is assumed that all mean values are

zero)

Local force correlation R k(T) E fj*(t)fk(t+)1 4.3.20

Local deflection correlation R k() = E y(t)yk(t+) 4.3.21

Modal force correlation R, (7) = E [(t) (t+7 4.3.22

Modal deflection correlation R 1 () = E [:(t) 1,(t+7)] 4.3.23

In matrix notation these 4 functions are written respectively

Physical forces and deflections are, of course, real quantities.

However, in the next section a description will be given which

admits complex coordinates. For this reason the preceding

definitions have been formulated in such a way that they also
apply to complex force and deflection coordinates.

Inserting eqn. 4.3.9 in eqn. 4.3.21 one obtains with

eqn. 4.3.23

R = AR ' Ak
St kit4.3.24

or [RY] [A] [R ] [A]T 32

This is a relation between modal and local cross correlation

matrix. Eqn. 4.3.24 can be easily inverted because of

[A] [A] = Iand one obtains

I] [A*] R] A1] 4.3.25
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Similar relations exist for the force correlation matrices:

R[,] =-] [O [A] T  4.3.26

[] [A*]T[Rf] [A] 4.3.27

The cross spectra are obtained from the cross correlations

by

Sk(w)= -iw k( )dv 4.3.28

with the inverse

Rk(r) =JeisrS k(w)dw 4.3.29

Therefore, the transformations 4.3.24 and 4.3.25 are also

valid for the cross spectra:

SB9] = A A4.3.30

[S = [A] [S [A] 4.3.31

Similar relations exist for the force spectra:

Sf =[A] [s [ 4.3.32
LS =AT[sf] [A] 4.3.33

The modal frequency response function 4.3.16 now relates

the modal force and modal deflection spectra:

S71 () = HI*(W)Sr;I (w)H (W) 4.3.34

a relatioi which is obtained from eqn. 4.2.5 by premultiplication
with [A*] and post multiplication with [A] and by considering
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eqns. 4.3,19, 4.3.31 and 4.3.33.. Rather than manipulating the

complex admittance matrix [H (w)] used in eqn. 4.2.5, the

normal mode analysis allows a very simple computation of res-

ponse spectra from input spectra according to eqn. 4.3.34.

If the local force spectra are given and the local deflection

spectra are desired, it is necessary to first transform the

local force spectra to modal force spectra with the help of

eqn. 4.3.33, and then to transform the modal deflection spectra

to local deflection spectra with the help of eqn. 4.3.30.

Finally the local cross correlation matrix is calculated

from eqn. 3.5.8 for t= 0:

Rk () Js k(w)dw 4.3.35

The diagonal terms of this matrix are the mean square deflec-

tions of the blade elements. It should be once more pointed

out that the real normal mode analysis is only applicable if

either the damping matrix has the form given in eqn. 4.3.13

or if the cross damping terms in the modal equations 4.3.11

can be neglected.

4.4 Complex Normal Mode Analysis

For blade flap bending the conditions for the validity

of the real normal mode analysis are not well satisfied,

since the damping matrix is neither proportional to the mass

or stiffness matrix nor are the cross damping terms in the

modal representation negligibly small. -A rigorous normal mode

analysis without neglecting terms is possible if one converts

the m second order differential equations with respect.to time

into 2m first order equations equivalent to Hamilton's

canonical equations. The new system of equations has 2m

complex eigenvalues and 2n complex eigencolumns, if one.

excludes the case of multiple eigenvalues. It is further

assumed, that the system is stable, though unstable systems

can also be treated with this method if another coordinate

transformation is performed, see Ref. (18). The inconvenience
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of complex eigencolumns and complex normal coordinates in this

method is in part compensated by the very simple form of the

frequency response function.

With the transformation

for deflections 4.4.1

IT1 = 1for forces 4.4.2

equation 4.2.1 assumes the form

[M] I + [K] I - ffJ 4.4.3

where

[M] Ec: )] [ 4.4.4

[K] = .5 0

The eigenvalue problem for eqn. 4.4.3 is defined by

) E1NX) [K = 0 4.4.6

where (] is the modal matrix. Eqn. 4.4.6 is the same as

eqn. 4.3.1 except for the sign. From the symmetry of the

matrices [4)] and [K] one can derive the orthogonality

relations

[1 [ X] [7]) = 4.4.7

[A) [K) (A] = xg 4.4.8



-38-

If all eigenvalues X, are different the complex eigenvectors

.Ju form a system of linearly independent vectors and the

expansion theorem holds:

j or~1 4jt, or ..11.9

Inserting this sum into eqn. 4.4.3 and premultiplying by [Aj

one obtains with eqns. 4.4.7 and 4.4.8:

[ + xL~1 = ~!; 4.4.10

where = li or v= 1i j 4.4.11

With

one can write the set of 2m uncoupled equations 4.4.10 in the

form
-1

or 4.4.13

Eqn. 4.4.13 has the modal frequency response function

1. 4.4.14

Formally all relations of section 4.3 are still valid if y

and n are replaced by ? and j and f 'and ~ are replaced by

rand 0 respectively. While in section 4.3 the stars on [A]

were meaningless since LA) was real, the compleX character

of (A] must now be properly considered.
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Given the local force spectra Sf () one first

transforms to modal force spectra by

then to modal deflection spectra by

or S1 (W) 4.4.16

and finally to local deflection spectra by

*S-] [A S (w) ]T 4.4.17

The transformation of the physical spectra [sY(w)] and

S( to the values for the first order system S (o)

and (0)] are to be performed in agreement With equations

4.4.1 and 4.4.2.

Since S k(w) E j (w)Yk()]

one obtains from eqns. 4.4.1 and 4.4.2:

w +---- - - - - - 4.4.18

U( I-i .. sY"(, [sY(w)]J

[] i [o]
S()] 4 ------- 4.4.19Lo3j [s,(w)]j
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If [SY(w)] is given as the result of the modal analysis,

it is easy to obtain [sY(w)] from eqn. 4.4.18. In Appendix C

an algorithm is developed for the complex normal mode analysis

of randomly excited multi-degree of freedom systems.

If CS] is the stress-deflection matrix with matrix

element SYj k ( k indicating the bending stress at blade

station k) the physical stress cross correlation matrix is

given by

CP n C p] [,71 1s* 4.4.20
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5. Outline for Lifting Rotor Model Tests in Turbulent Flow

In the random blade flapping and blade flap bending

theories presented in Sections 3 and 4, it is assumed that the

random blade loads at the various blade stations are known,

so that the output random flapping angles or flap bending

deflections or moments can be computed. In the following,

two types of model tests are outlined which have two different

relations to the theory. In the first and more sophisticated

type of model tests, the test results are used to substantiate

the theory. In the second less sophisticated type of model

tests the theory is required to interpret the test results.

In both types of model tests information is obtained about

the aerodynamic blade loads when the model is operated in

a turbulent flow.

5.1 Model Tests with Both Load and Load Response Measurements

In order to substantiate the theory by experiments,

it is required to record on tape at a number of blade stations

the aerodynamic blade loads together with flapping angle

(if flapping hinges are provided) and flap-bending strains.

The tape recordings must be of sufficient length to allow

adequate random data processing, say 500 rotor revolutions.

The pressure pick-ups must be fast responding and the slip

rings should not introduce excessive noise. .Probably it will

not be possible to install a sufficient number of pressure

pick-ups to reliably integrate the blade aerodynamic loads,

and it will be necessary to calculate the loads from the readings

of a few strategically located pick-ups, possibly just from

two pick-ups per blade station installed in the region of

maximum pressure at the upper and lower airfoil surface.

This system needs calibration in a flow of known fluctuations

of the flow direction and of known overall aerodynamic pressures,

which in itself will present problems. :In addition to the

model rotor instrumentation the turbulence characteristics

of the inflow must be measured upstream of the model rotor,

for example with a number of crossed hot wire probes.
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These tests will require considerable preparation, but they

should be valuable in obtaining data on both the aerodynamic

loads and on the load responses of lifting rotors operating

in turbulent flow, thus making a substantiation of the theory

of Sections 3 and 4 possible.

5.2 Model Tests with Load Response Measurements Only

A much simpler test set-up is obtained, if the aero-

dynamic load measurements are omitted. In this case, only

flapping angles and flap-bending strains would be recorded

at a number of blade stations. The theory would then be used

in order to establish the random aerodynamic load characteristics

from the random response measurements. Same as in the previous

case, the turbulence characteristics of the inflow must be

measured upstream of the model rotor. These tests would not

be a check of the theory which has to be assumed as valid,

but the tests would be valuable in obtaining data on the random

aerodynamic blade loads produced by the turbulent inflow.

Depending on the character of this turbulence it might be

possible to predict theoretically the rotor blade angle of

attack fluctuations and thereby the blade load fluctuations

from a given turbulence spectrum of the inflow. Most likely,

however, the relation between inflow turbulence and the tur-

bulence which the rotary wing feels will be a rather complex

one and may not be easily tractable by a theoretical approach.

At Ames Research Center there is available a 4-bladed

12 ft. diameter propeller which could be used as generator

for a turbulent flow by setting the two blade pairs at largely

different incidence angles. Also available is a two bladed

see-saw rotor of 9 ft. diameter which could be operated in

the wake of the 4-bladed propeller.

A Minimum Instrumentation for the test is considered

as follows:

1. Flapping angle pick-up, probably best obtained with

a strain gauged flexure which is loaded.in blade

flapping.
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2. Two strain gauges near the blade root, one for each

blade, measuring flap-bending strain. Possibly more

flap-bending strain gauges along the blade radius.

3. Blade azimuth indicator.

4. Two crossed hot wire probes, located upstream of the

rotor in the rotor plane with a lateral distance of

about .7 rotor diameters between each other.

The readings of items 1 to 4 must be tape recorded. In

addition, blade incidence and rotor shaft incidence must be

known.
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6. Conclusions

6.1 The concepts for a theoretical and experimental study

of lifting rotor random loads and vibrations have been

developed. Random lifting rotor loads occur not only during

operation in atmospheric turbulence but also in a quiet

atmosphere when there can be a self induced turbulence of the

flow through the rotor plane as in vertical descent in the

vortex state, or as in transition from hovering to forward

flight.

6.2 A survey of random process theory has shown that very

little prior work has been done in the area of non stationary

random processes, in particular when the system parameters

are time varying. The only type of non stationary random

processes which are presently analytically manageable 
are

modulated stationary random processes. Under the assumption

that the random processes a.ssociated with lifting rotor

operation are of this type, it has been shown that up 
to an

advance ratio of p = .3 the effect of the time variability

of the system parameters in blade flapping is quite small.

If confirmed by experimental hardware or simulator results,

this would greatly simplify lifting rotor random loads and

vibrations analyses except for very high advance ratios.

6.3 A rather complete theory of random blade flap-bending

has been presented under the usual assumptions of stationary and*

ergodic behaviour. While the theoretical concepts are available,

the numerical analysis is quite extensive. No previous work

exists which would indicate the validity of possible approxi-

mations like the neglect of cross damping terms in the modal

representation, or the neglect of the cross correlations

between blade elements or blade modes, or the less drastic

neglect of the quad spectra between blade elements 
or blade

modes. A systematic computational and experimental approach

to these important questions will be required. It is reassuring,

however, that a complete cross correlation analysis is av&ilable



in principle and may well be computationally tractable.

6.4 Experimental work with lifting rotor models is proposed

to study the random loads and load responses when the model

is operating in a turbulent flow. With a rather sophisticated

rotor model instrumented for the recording of both aerodynamic

blade loads and blade responses to these loads, the theory

could be: substantiated. However, valuable test results can

also be expected from a simple rotor model instrumented

only for the recording of flapping angles and flap-bending

strains. In such tests the theory would be required to

interpret the test results with respect to random air loads

produced by operation of the model rotor in turbulent flow.
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Appendix A: Time Averaged Autocorrelation Function and

Associated Power Spectral Density of a

Stationary Random Process Modulated by a

Periodic Function

If y(t) is the product of a stationary random function

x(t) and a deterministic periodic function A(t) (modulated

stationary random process), then the random process obtained

by averaging the autocorrelation function

1/2

LaM , Ry(t ,)dt = R (T) A-i

-T/2
is a stationary random process and has the measurable single

frequency power spectral density, see Section 9.5.3 of Ref. (7).

y (W = I R e-iw A-2
-0

As A(t) is periodic, it can be expressed in Fourier series

A(t) = k oik6t

k =-W

Setting

y(t) = x(t) ck ikb t ,
k -e

one obtains

Ry(tlt 2 ) = E[x(txt 2) cke ikat}{ 'c I~4

k =-w =-O

= Rx(t 2 -tI) ckc li o(kt+l")

k =-w I =-w

tl+t 2

Substitute t2-t I = 7 and 2 = t, to get

R ( t) = Rx() CI -
k =-as I -e
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While applying equation A-1, it is easy to verify that

LIM 1 k ] 0 except fork = I = OT-_D T 1(k+ )
42, & k = -

As I and k can take both positive and negative values I-k

can take values 2k and -2k.

Therefore,

CO 2c k ) o2Rx()

y (,7)) Rx() c 2 i(+2k) + c Rx)
k 0

Applying equation A-2, one gets a measurable single frequency,

power spectral density

S ) = S( + S S x ( 4k) + Sx(cj-kt) A-3

k' :0

Another way of obtaining the same result is to multiply the

double frequency spectrum correponding to the sample function

x(t)A(t) by 6(w2 -& 1 ). This is shown in the following deriva-

tion.

With

y(t)=x(t) c k elk t

k

set

-@ k =-oo

to obtain

y*(W1 ) = cox () + ck *(1 o)

kCO
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and

Y( W2 ) = cX( W 2)+ E Ck X( &2-k o)+X( W2 +k Wo)

k 0

The double frequency spectrum is defined by

Sy( (i Y )  E[Y( )Y( W2)]

We now multiply this double frequency spectrum with 5( 0 2 - W1):

2 1 t W
6( W02 - W)Sy( 01' 2)  a (W2" WI) o Sx (  2

00 2 tj2-2k wo+ W1
+ ok26( W2- w (1)Sx( 2 2

A-4
k 0O

S+ 00 2 W2+2k Wo + ,1

k * 0

and obtain the same equation as A-3.
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Appendix B: Computation of Power Spectral Density for 
a

Flapping Randomly Excited Blade

Equation B-1 represents a general type of linear,

second order and non-homogeneous differential equation with

constant and periodic coefficients, #(t) and a(t)

representing respectively the non stationary random 
response

and the stationary random input.

#+ c 1+a sin(nwot +e1) + Ic 2 +a 2 sin(nt +92)10

_ c3+a 3 sin(n.lt +03) a (t) B-1

(Selecting a time unit for which the rotor angular 
velocity

nw = 1 and substitutig 01 = 0, 02 = , 03 = O, c = c 3

a, = a2 = -, c 2  , a = - in equation B-I, an approximate

blade flapping differential equation valid up 
to about p= 0.3

advance ratio, is obtained. For details refer to Section 3.)

With the operator . representing the Fourier integral trans-

formation, let

()= -w~ 2 B( )

f[lc1+alsin(nt + 1) .= B1 ( W )

F[c 2+a 2sin(n.t +02)101= B2 ( ) and

F[c 3+a 3 sin(nwJ +03) 11] B3( w

Apply the operator [ to equation B-1 at frequencies wI and w2

to yield

-w2 B *(wl)+B( )+B ()+B 2  ) = B 3 ( )

.and -'22B(2)+B 1 (aw2)+B2(w 2 )
= B3(2) '



-52-

Now, consider

E [B*( w)B( 2)]

along the line el =  2 = , as explained in Appendix A

and set

( Y,- 2 lIE B( u1)B( "2)] (

After some algebra one obtains

(-+c1 2 2-2c +022 S ( )+ (-nw.) 2  2 -n*)sin(O
il, -- a( n -n+ . )sin( a27n

a.

2 2
+( w+n~)2 +- (o +nwo)sin(el-92)+ SO (,+n,)

2

= c3 2S (W ) + -- Sa(u+n )+Sa ( w -nu) B-2

With w= kwo where k is a discrete variable with values k = 1,2,...

and co a fixed step size, eqn. B-2 represents an infinite set

of difference equations for S (kwo) which will be abbreviated

by Sk( ). -Since Skn( = S_+n( ) and since from physical

considerations Sk+n( ) -- 0 for large k., the infinite set of

equations can be approximated by a finite set.

Express equation B-2 in a symbolic form

A(k,k)Sk (  )+ A (k- n ,k )S k -n( =)+A(k+n,k)Sk+n( ) = R.H.S. B-3

Equation B-3 is inverted for Sk( w) values by a digital computer

program (19) which essentially involves a matrix inversion

subroutine. Figures 2o-d show numerical results for two stochastic

inputs S- ( o). Figures 2a and 2b with a = a 2 = .2 refer to

an advance ratio s = 0.3.and a blade inertia number ' = 4.

For this set of coefficients the values A(k-n,k) and A(k+n,k)

are two order of magnitude smaller than A(k,k) which explains

the fact that the results of the present algorithm do not

differ appreciably from those for the constant parameter system
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obtained by omitting the periodic terms in eqn. B-I. The

results obtained for the same set of stochastic inputs but

now with a = a 0.8 show a substantial difference,

Figures 2c and 2d,between the present method and the equivalent

constant parameter system, as expected. It is to be noted

that the second set of coefficients have no physical relevance

as the approximate blade flapping equation is valid up to

about p'= 0.3 advance ratio and the blade inertia number

is generally less than 10 for helicopters.
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Appendix C: Discrete Element Algorithm for Complex Normal

Mode Analysis of Multi Degree of Freedom Stable

Systems Under Random Excitation

Before actually coming to the numerical analysis,,it

is mandatory to replace the continuum as an assemblage of 'm'

discrete elements to obtain 'm' equations of dynamic equilibrium

in a standard form, equation 4.2.1, and then, as discussed in

Section 4.4, convert these m equations into 2m first order

differential equations having 2m complex eigenvalues and 2m

complex modal columns. The discussion here is restricted

to blade flap-bending random analysis with small advance ratio

though the present algorithm is applicable to any discrete

systems under random excitation.

The analysis of numerical problems comprises three

main phases:

1) the mass, damping and stiffness matrices

2) the eigenvalues and eigencolumns

3) the spectral density matrices and RMS deflection

and stress values at element stations. The numerical

operations are carried out in two passes - the first

two phases in the first run and the last one in the

second run.

The computer program, written in FORTRAN IV language

is based on some of the subroutines appearing elsewhere in

the literature (19, 20, 21, 22). It accepts as inputs the

following information regarding the pattern of discretization

and other constants associated with the physical system.

i) number of elements

ii) Hubradius

iii) boundary conditions at the hubjoint

iv) lift slope (5.7 per radian)

v) blade chord at midpoint of the element or element

station

vi) air density

vii) rotor speed in rad/sec

viii) gravitational constant

ix) x-ordinate of element stations
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x) flexured rigidity EI at element stations

xi) vertical load at element stations

In the present case, the mass and damping matrices

are diagonal matrices, hence they can be directly read into

the program. The damping terms at each element station can

also be calculated from the formula acpa-- (see equation 4.1.1).

Depending upon the initial conditions at the hubjoint solve for

M1 , M2 - -- - - - -- - - - Mm1 and 01' 2 ' --- em from equations

4.1.6 and 4.1.8 by calling a matrix subroutine which computes

the inverse and rank of a matrix and solves a set of simultaneous

equations according to Gauss-Jordan reduction principle.

Generate the matrix of influence coefficients, Wi, from the

recurrence relation 4.1.9. The stiffness matrix kij] is

obtained by inverting the matrix wij]

With mI] , [c3 , and [k] matrices being generated in

the first operation, call for matrix subroutines to compute
-1 -

m ] [c] and [m] [k]

and finally compute the eigenvalue matrix (see equation 3.6.8)

m ] ] c -] ]- --------------
[[01

The 2m eigenvalues and 2m eigenvectors are calculated in the

following order:

i) Generating the characteristic polynominal. The subroutine

is based on the Leverrier-Faddev method (20-355)

according to which the coefficients p 1'p.2p'n in the

characteristic polynominal

n n-l n-2
X ' -p .p2 A n = 0
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are given by

Pn = (1/n)(trace [Gn )

where [G1][G]

G = Gn -pn-1 ]
ii) Calculation of roots of the characteristic polynominal:

This is effected by a subroutine of reference 20

which finds real and imaginary parts of complex roots

and gives the reduced polynominal which in turn is

examined for real roots if any.

iii) Solution of simultaneous linear equations for eigenvectoros

The complex modal columns or eigenvectors are obtained

by a simultaneous equation subroutine (19, 22).

Presuming that the physical cross spectra [sf( W

of the exciting system are known, the RMS deflection and stress

values are computed in the following sequence:

1) Obtain the local force cross spectra from equation 4.4.19

and then transform it to the modal force cross spectra

according to the relation 4.4.15.

2) From equation 4.4.16 compute the modal deflection cross

spectra which when .substituted in equation 4.4.17

gives the local deflection cross spectra.

3) Obtain the physical deflection cross spectra from

equation 4.4.18.

4) Using any quadrature subroutine calculate the physical

deflection and stress space cross correlation

R (0)] =[S] [RY(0)] S

the diagonal terms of which give the corresponding RMS

values at element stations (refer to equations 4.4.20).


